Architectural Design and the Indoor Microbiome
Summary
We sampled 155 rooms from a building on the University of Oregon campus – Lillis Hall- shortly after its completion and opening. Lillis is a four-story building, with a combination of classrooms, offices, hallways, bathrooms, and open-area spaces, and which features a combination of natural (open window) and mechanical ventilation strategies. Different space types within the building hosted different bacterial communities; classrooms were different from hallways which were different from offices and so forth (Figure 4). Rooms which were physically connected shared more bacteria than rooms farther apart- indicating that microbes are dispersed into and our of spaces regularly (Figure 6).
Figure 4

Dust communities within a building cluster by space type and are strongly correlated with building centrality and human occupancy. Points represent centroids (±SE) from distance based redundancy analysis (DB-RDA). Space types hold significantly different communities (P = 0.005), though this is driven primarily by restrooms. Bacterial OTUs that have the strongest influence in sample dissimilarities are shown at the margins; numbers in parentheses indicate multiple OTUs in the same genus. Centrality (along y-axis) represents network betweenness and degree; human occupancy (along x-axis) represents annual occupied hours and human diversity. All four correlates (simple linear models as a factor of ordination axis) are significant along their respective axes (all P<0.001).
Figure 6

Offices in Lillis Hall show a strong distance-decay pattern. When only considering a single space type, biological similarity (y-axis; 1 – Canberra distance) decreases with connectance distance (number of intermediate space boundaries [e.g., doors] one would walk through to travel the shortest distance between any two spaces) (Mantel test; R = 0.189; P = 0.002). The same pattern was also observed at the whole-building scale (not shown; Mantel test; R = 0.112; P = 0.001).
Video
Press
Architecture May Influence Which Microbes Surround You
Greg Miller, Wired, 27 Feb 2014
How Architecture Could Shape Your Microbiome
Shaunacy Ferro, Fast Company, 04 Feb 2014
Building Design Influences Bacterial Growth
Brooke Borel, Popular Science, 29 Jan 2014
Changing your office layout affects its (bacterial) culture
Quartz, Rachel Feltman
How the Architecture of Our Buildings Shapes the Germs Around Us
Gizmodo, Kelsey Campbell-Dollaghan
Architecture May Influence Which Microbes Surround You
Wired, Greg Miller
Bacteria by Design
The Scientist, Jef Akst
Architecture and Your Microbiome
The Atlantic, Alexis C. Madrigal
Studying – Not Wantonly Killing – the Microbes Around Us and the Rise of the “Microbiology of the Built Environment
microBEnet Blog, Jonathan Eisen